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Una partició entera es diu triangular si el seu diagrama de Ferrers es pot separar del

seu complement (com a subconjunt de N2) amb una ĺınia recta. Aquest article es

basa en alguns desenvolupaments recents sobre el tema per derivar noves propietats

enumeratives, geomètriques i algoŕısmiques d’aquests objectes. La investigació
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diagrama de Ferrers que pot ser separat del seu complement per una corba convexa

o còncava.

Abstract (ENG)
An integer partition is said to be triangular if its Ferrers diagram can be separated

from its complement (as a subset of N2) by a straight line. This article builds

on some recent developments on the topic in order to derive new enumerative,

geometric and algorithmic properties of these objects. The research is then extended

to higher-dimensional generalizations, called pyramidal partitions, and to convex and

concave partitions, defined as partitions whose Ferrers diagram can be separated

from its complement by a convex or concave curve.
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Properties of triangular partitions and their generalizations

1. Introduction

An integer partition is said to be triangular if its Ferrers diagram can be separated from its complement
by a straight line. These objects first appeared in the contexts of combinatorial number theory [3] and
computer vision [4]. From a combinatorial perspective, they were first studied by Onn and Sturmfels [11],
who defined them in any dimension and called them corner cuts. Shortly after, Corteel et al. [5] obtained
the generating function for the number of 2-dimensional corner cuts. More recently, triangular partitions
have attracted interest in the field of algebraic combinatorics. Motivated by work of Blasiak et al. [2]
generalizing the shuffle theorem for paths under a line, Bergeron and Mazin [1] coined the term triangular
partitions and studied some of their combinatorial properties.

In this article we present new enumerative, geometric and algorithmic properties of triangular partitions
and their generalizations. In Section 2 we give basic definitions and some results from [1, 5]. In Section 3
we introduce a natural alternative characterization of triangular partitions, as those such that the convex
hull of the Ferrers diagram and that of its complement do not intersect. Moreover, we characterize which
points may be added to or removed from the Ferrers diagram while preserving triangularity.

In Section 4, we present two ways to encode triangular partitions in terms of balanced words, and use
one of them to implement an algorithm which, for a given N, computes the number of triangular partitions
of size n ≤ N in time O(N5/2). This allows us to obtain the first 105 terms of this sequence, while just
39 terms were known previously.

In Section 5, refining the approach from [5], we obtain generating functions for triangular partitions
with a given number of removable and addable cells. In Section 6, we present a recurrence for the number
of triangular partitions contained in a fixed triangular partition, as well as an explicit formula involving
Euler’s totient function for the case where the fixed partition is a staircase. A new combinatorial proof of
Lipatov’s enumeration theorem for balanced words [8] is obtained as a byproduct.

Section 7 studies pyramidal partitions, which are an extension of triangular partitions to higher di-
mensions. We prove that the characterization in terms of convex hulls generalizes nicely and that, for
dimension 3 or higher, the number of removable and addable cells can be arbitrarily large. We also describe
the residue modulo d of the number of d-dimensional pyramidal partitions of size n, for d prime.

In Section 8, convex and concave partitions are analyzed. These are partitions whose Ferrers diagram
can be separated from its complement by a convex or concave line. We present several characterizations
and we describe their removable and addable cells in terms of convex hulls. Finally, we prove that there
exist constants a, b, c such that the number of convex partitions of size n is greater than exp(a 3

√
n) and

smaller than exp(b 3
√
n log n), and the number of concave partitions of size n is greater than exp(c 3

√
n).

Due to space constraints, proofs are omitted from this article. A more thorough explanation of the
results is detailed by Elizalde and the present author in [7].

2. Background

A partition λ is a weakly decreasing sequence of positive integers, called the parts of λ. We will denote λ =
(λ1,λ2, ... ,λk), or λ = λ1λ2 ...λk when there is no possibility of confusion. We call |λ| = λ1+λ2+ · · ·+λk

the size of λ. If |λ| = n, we say that λ is a partition of n.

https://reportsascm.iec.cat32

https://reportsascm.iec.cat


Alejandro B. Galván

Let N denote the set of positive integers. The Ferrers diagram of λ is the set of lattice points

{(a, b) ∈ N2 | 1 ≤ b ≤ k , 1 ≤ a ≤ λb}.

We will often identify a lattice point (a, b) with the unit square (called a cell) whose north-east corner
is (a, b). In particular, we say that a cell lies above, below or on a line when the north-east corner does.
The Ferrers diagram can then be interpreted as a set of cells. We will often identify λ with its Ferrers
diagram, and use notation such as c = (a, b) ∈ λ.

Let σk = (k , k−1, ... , 2, 1) denote the staircase partition of k parts. The conjugate λ′ of λ is obtained
by reflecting its Ferrers diagram about the y = x axis. The complement of λ is defined to be the set N2\λ,
where λ is identified with its Ferrers diagram.

Definition 2.1. A partition τ is triangular if its Ferrers diagram consists of the points in N2 that lie on or
below the line that passes through (0, s) and (r , 0) for some r , s ∈ R>0, called a cutting line.

See the left of Figure 1 for an example. We often use τ to denote a triangular partition.

s

r

Figure 1: Left: A cutting line for the triangular partition (8, 6, 5, 3, 1). Right: The first 105 terms of the
sequence |∆(n)|/(n log n).

Denote by ∆ the set of all triangular partitions and by ∆(n) the set of triangular partitions of size n.
Corteel et al. [5] obtain the generating function of |∆(n)| and bound the asymptotic growth of this number.

Theorem 2.2 ([5]). The generating function for triangular partitions can be expressed as

G∆(z) =
∑
n≥0

|∆(n)|zn =
1

1− z
+

∑
gcd(a,b)=1

∑
0≤j<a
0≤i<b

∑
1≤m<k

zN∆(a,b,k,m,i ,j),

where

N∆(a, b, k ,m, i , j) = (k − 1)

(
(a+ 1)(b + 1)

2
− 1

)
+

(
k − 1

2

)
ab + ij

+ i(k − 1)a+ j(k − 1)b + T (a, b, j) + T (b, a, i) +m,

(1)

and T (a, b, j) =
∑j

r=1(⌊rb/a⌋+ 1).
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Theorem 2.3 ([5]). There exist positive constants c and c ′ such that, for all n > 1,

cn log n < |∆(n)| < c ′n log n.

Let c = (i , j) be a cell of a triangular partition λ = λ1 ...λk . Define the arm length and the leg length
of c to be a(c) = λj − i and ℓ(c) = λ′

i − j , that is, the number of cells to the right of c in its row, and
above c in its column, respectively. Bergeron and Mazin [1] characterize triangular partitions and study
the number of cells that can be added or removed while preserving triangularity.

Lemma 2.4 ([1, Lemma 1.2]). A partition λ is triangular if and only if t−λ < t+λ , where

t−λ = max
c∈λ

ℓ(c)

a(c) + ℓ(c) + 1
, and t+λ = min

c∈λ

ℓ(c) + 1

a(c) + ℓ(c) + 1
.

Definition 2.5. A cell of τ ∈ ∆ is removable if removing it from τ yields a triangular partition. A cell of
the complement N2 \ τ is addable if adding it to τ yields a triangular partition.

Lemma 2.6 ([1, Lemma 4.5]). Every nonempty triangular partition has either one removable cell and two
addable cells, two removable cells and one addable cell, or two removable cells and two addable cells.

3. Characterization of triangular partitions

In this section, we introduce a new characterization of triangular partitions in terms of convex hulls. This
characterization is natural and arguably simpler than the one given in Lemma 2.4 by Bergeron and Mazin [1],
which involves the computation of an expression in terms of arm and leg lengths for each cell. We also
present a way to identify removable and addable cells. The convex hull of a set S ⊆ N2 will be denoted
by Conv(S).

Proposition 3.1. A partition λ is triangular if and only if Conv(λ) ∩ Conv(N2 \ λ) = ∅.

We will use the term vertex to refer to a 0-dimensional face of a polygon; in particular, not all lattice
points of Conv(τ) are vertices.

Proposition 3.2. Two cells in τ ∈ ∆ are removable if and only if they are consecutive vertices of Conv(τ)
and the line passing through them does not intersect Conv(N2 \ τ). Similarly, two cells in N\ τ are addable
if and only if they are consecutive vertices of Conv(N2 \ τ) and the line passing through them does not
intersect Conv(τ).

An immediate corollary is that a triangular partition cannot have more than two removable cells and
two addable cells, as we know from Lemma 2.6 by Bergeron and Mazin [1].

A similar characterization in terms of convex hulls for a single removable cell is proved by Elizalde and the
present author in [7], and is then used to describe an algorithm that determines whether a partition λ of n
into k parts is triangular. Said algorithm has complexity O(k) for the initialization and O(min{k ,

√
n})

for the rest of its steps, whereas an algorithm based on Bergeron and Mazin’s Lemma 2.4 would take
time O(n).
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4. Bijections to balanced words and efficient gener-
ation

In this section, we present two different interpretations of triangular partitions in terms of finite Sturmian
words, also known as balanced words. The first interpretation, which is hinted at in [1], is quite natural,
and it will allow us to prove an enumeration formula in Section 6. The second one relates each triangular
partition to a balanced word together with two positive integers, and it will be used in Section 4.4 to
implement an efficient algorithm to count triangular partitions by size.

4.1 Background on balanced words

A finite consecutive subword of a word is called a factor. An infinite binary word s is Sturmian if, for
every ℓ ≥ 1, the number of factors of s of length ℓ is exactly ℓ + 1. The applications of Sturmian words
range from combinatorics and number theory to dynamical systems; see [9] for a thorough study.

A finite binary word w = w1 ...wℓ is a factor of some Sturmian word if and only if it is balanced, that
is, for any positive integers h ≤ ℓ and i , j ≤ ℓ− h + 1, we have

|(wi + wi+1 + · · ·+ wi+k−1)− (wj + wj+1 + · · ·+ wj+k−1)| ≤ 1.

This condition states that for any two factors of w of the same length, the number of ones in these factors
differs by at most 1. Denote by B the set of all balanced words, and by Bℓ the set of those of length ℓ.

The following enumeration formula for balanced words was first proved by Lipatov [8]. Let φ denote
Euler’s totient function.

Theorem 4.1 ([8]). The number of balanced words of length ℓ is

|Bℓ| = 1 +
ℓ∑

i=1

(ℓ− i + 1)φ(i).

4.2 First Sturmian interpretation

Definition 4.2. A triangular partition is wide if all its parts are distinct. A partition is tall if its conjugate
is wide.

It can be shown that every triangular partition must be wide or tall, and it is both wide and tall if
and only if it is a staircase. The following proposition is a consequence of a well-known bijection between
balanced words and lattice paths with steps in {(1, 0), (1, 1)} (see [9]).

Given a wide triangular partition τ = τ1 ... τk , define the binary word

ω(τ) = 10τ1−τ2−110τ2−τ3−1 ... 10τk−1−τk−110τk−1. (2)

Since τ is wide, the exponents are nonnegative. For example, ω(86531) = 10110101.

Proposition 4.3. For every k, ℓ ≥ 1, the map ω is a bijection between the set of wide triangular partitions
with k parts and first part equal to ℓ, and the set of balanced words of length ℓ with k ones that start
with 1.
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4.3 Second Sturmian interpretation

To our knowledge, our second encoding of triangular partitions using balanced words is new. Let W be the
set of wide triangular partitions with at least two parts, and let B0 denote the set of balanced words that
contain at least one 0.

First we describe the set of differences of consecutive parts in a wide triangular partition. For τ =
τ1 ... τk ∈ W, define

D(τ) = {τ1 − τ2, τ2 − τ3, ... , τk−1 − τk}.

Lemma 4.4. For any τ = τ1 ... τk ∈ W, there exists d ∈ N such that τk ≤ d + 1 and either D(τ) = {d}
or D(τ) = {d , d + 1}.

Define min(τ) = τk , dif(τ) = minD(τ), and wrd(τ) = w1 ...wk−1, where, for i ∈ [k − 1], we let
wi = τi − τi+1 − dif(τ). Lemma 4.4 guarantees that wrd(τ) is a binary word.

Theorem 4.5. The map χ = (min, dif, wrd) is a bijection between W and the set

T = {(m, d ,w) ∈ N× N× B0 | m ≤ d + 1; w1 ∈ B0 if m = d + 1}.

Its inverse is given by the map

ξ(m, d ,w1 ...wk−1) = τ1 ... τk , where τi = m +
k−1∑
j=i

(wj + d) for i ∈ [k].

Additionally, given τ ∈ W with image χ(τ) = (m, d ,w), its number of parts equals the length of w plus
one, and its size is

|τ | = km +

(
k

2

)
d +

k−1∑
i=1

iwi . (3)

4.4 Efficient generation

Before this work, the entry of the OEIS [10, A352882] for the number triangular partitions of n only included
values for n ≤ 39. These are the terms listed in [5], where they are obtained from the generating function
in Theorem 2.2. This approach turns out to be impractical for large n.

Theorem 4.5 can be used to implement a much more efficient algorithm that can quickly compute
the first 105 terms of the sequence. Consider the tree where each vertex is a balanced word of length at
most ⌊

√
2N⌋, and the parent of a nonempty word is the word obtained by removing its last letter. On

input N, our algorithm runs a depth first search through this tree.

For each w ∈ Bℓ with ℓ ≤
√
2N, the algorithm finds all the values m, d ∈ N such that (m, d ,w) ∈ T ,

as defined in Theorem 4.5, and such that the size function given in equation (3) is at most N. Each
triplet (m, d ,w) corresponds to two partitions, the wide triangular partition τ = χ(m, d ,w) and its conju-
gate, except when w = 0k−1 (for some k ≥ 2) and m = d , in which case it accounts for only one partition,
the staircase σk .

A C++ implementation of this algorithm can be found at [6]. In a standard laptop computer, this
algorithm generates the first 103 terms of the sequence |∆(n)| in under one second, the first 104 terms in
under ten seconds, and the first 105 terms in under one hour.
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Proposition 4.6. The above algorithm finds |∆(n)| for 1 ≤ n ≤ N in time O(N5/2). Additionally, it can
be modified to generate all (resp. all wide) triangular partitions of size at most N in time O(N3 logN)
(resp. O(N5/2 logN)).

The plot on the right of Figure 1 portrays the first 105 terms of the sequence |∆(n)|/(n log n). A
qualitative study suggests that, for large n, this sequence oscillates between two decreasing functions that
differ by about 0.05.

5. Generating functions for subsets of triangular
partitions

Let ∆1 and ∆2 denote the subsets of triangular partitions with one removable cell and with two removable
cells, respectively. Let ∆1 and ∆2 denote the subsets of triangular partitions with one addable cell and with
two addable cells, respectively. Let ∆2

2 = ∆2 ∩∆2. Denote partitions of size n in each subset by ∆1(n),
∆2(n), ∆

1(n), ∆2(n) and ∆2
2(n). In this section we obtain generating functions for each of these sets,

refining Theorem 2.2. In the following proposition, N∆(a, b, k ,m, i , j) is the function defined in equation (1).

Proposition 5.1. The generating function for triangular partitions with two removable cells can be ex-
pressed as

G∆2(z) =
∑
n≥0

|∆2(n)|zn =
∑

gcd(a,b)=1

∑
0≤j<a
0≤i<b

∑
k≥2

zN∆(a,b,k,k,i ,j).

Proposition 5.2. The generating functions for partitions in ∆1, ∆2, ∆1, ∆2
2 can be written in terms

of G∆(z) (given in Theorem 2.2) and G∆2(z) (given in Proposition 5.1) as follows:

G∆1(z) = G∆(z)− G∆2(z)− 1, G∆2(z) =
1− z

z
G∆(z) +

1

z
G∆2(z)−

1

z
,

G∆1(z) =
2z − 1

z
G∆(z)−

1

z
G∆2(z) +

1

z
, G∆2

2
(z) =

1− 2z

z
G∆(z) +

1 + z

z
G∆2(z)−

1

z
.

We have used Proposition 5.1 in order to implement an algorithm to find |∆2(n)|, available at [6]. The
initial terms of the sequences |∆1(n)| and |∆2(n)| suggest that |∆2(n)| > |∆1(n)| for all n ≥ 9, although
we do not have a proof of this. It is interesting to note that, at least for n ≤ 150, both the local maxima
of |∆1(n)| and the local minima of |∆2(n)| occur precisely when n ≡ 2 (mod 3). On the other hand,
|∆(n)| does not show such periodic extrema.

6.Triangular subpartitions and a combinatorial proof
of Lipatov’s formula for balanced words

Let I (τ) = |{ζ ∈ ∆ : ζ ⊆ τ}| denote the number of triangular subpartitions of τ ∈ ∆. We start by giving
a recurrence for this number. In the case where τ is a staircase, we obtain an explicit formula too, deriving
a new proof of Theorem 4.1 in the process.
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Let c− and c+ be the leftmost and rightmost removable cells of τ . Following the notation in [1], let
τ◦ be the triangular partition obtained from τ by removing all the cells in the segment between c− and c+

(or, if c− = c+, just removing that cell).

Lemma 6.1. For any τ ∈ ∆(n) with n ≥ 1,

I (τ) = I (τ \ {c−}) + I (τ \ {c+})− I (τ◦) + 1.

This recurrence relation comes from an inclusion-exclusion argument. Along with the base case I (ϵ) = 1
(where ϵ denotes the empty partition), it allows us to compute I (τ) for any τ ∈ ∆, although not very
efficiently. We will now present a more convenient formula for the case in which τ is a staircase.

We use the terms height and width of a partition τ to refer to the number of parts and the largest part
of τ , respectively. Let ∆ℓ×ℓ be the set of triangular partitions whose width and height are at most ℓ. It can be
proved that a partition belongs to ∆ℓ×ℓ if and only if it is a triangular subpartition of σℓ. Our next goal is to
give a formula for I (σℓ)= |∆ℓ×ℓ|. The proof of the following lemma uses the bijection ω from equation (2).

Lemma 6.2. For ℓ ≥ 1, the number of triangular partitions of width exactly ℓ and height at most ℓ
is |Bℓ|/2, and

|∆ℓ×ℓ \∆(ℓ−1)×(ℓ−1)| = I (σℓ)− I (σℓ−1) = |Bℓ| − 1.

Combining the above lemma with Lipatov’s Theorem 4.1 enumerating balanced words, we deduce the
following result.

Theorem 6.3. For any ℓ ≥ 0,

|∆ℓ×ℓ| = I (σℓ) = 1 +
ℓ∑

i=1

(
ℓ− i + 2

2

)
φ(i).

Unfortunately, the proof of Theorem 6.3 using Lemma 6.2 and Lipatov’s formula does not give a
conceptual understanding of why the terms

(
ℓ−i+2

2

)
and φ(i) appear.

Instead, we have been able to find a direct combinatorial proof of Theorem 6.3 that explains the
role of these terms. Since the whole proof does not fit in this article, we will briefly outline its main
ideas. First, we establish a bijection ϕ between triangular partitions that contain the cell (2, 1) and the
set {(a, b, d , e) ∈ N4 | d < a, gcd(d , e) = 1}, and characterize the image of ∆ℓ×ℓ by ϕ. Then, for a fixed
pair of coprime numbers d < e, we take the union of the points (a, b) for which (a, b, d , e) ∈ ϕ(∆ℓ×ℓ)
and an affine transformation of the points (a, b) for which (a, b, e, e − d) ∈ ϕ(∆ℓ×ℓ). The resulting set
is formed by the lattice points inside a certain triangle, which are counted by

(
ℓ−e+2

2

)
. Summing over all

coprime pairs d < e and taking into account some technical details, we obtain the formula in Theorem 6.3.

As an added benefit, our argument also provides a new proof of Lipatov’s formula (Theorem 4.1).

7. Pyramidal partitions

In this section, we will study a higher-dimensional analogue of triangular partitions. These objects are first
defined in [11], and some bounds on their growth are given in [13].

Definition 7.1. A d-dimensional pyramidal partition is a finite set of points in Nd that can be separated
from its complement by a hyperplane.
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Notice that a 2-dimensional pyramidal partition is the Ferrers diagram of a triangular partition. Propo-
sition 3.1 can be extended to this more general setting; however, Lemma 2.6 does not hold anymore.

Theorem 7.2. Let d ∈ N. A finite nonempty subset π ⊂ Nd is a d-dimensional pyramidal partition if and
only if Conv(π) ∩ Conv(Nd \ π) = ∅.

Proposition 7.3. For any d ≥ 3, there are d-dimensional pyramidal partitions with an arbitrarily large
number of removable and addable cells.

In the case of triangular partitions in N2, we have that the only partitions τ ∈ ∆ such that τ = τ ′

(that is, they are symmetrical with respect to the line x = y) are the staircase partitions. From this fact,
we can deduce that |∆(n)| ≡ 1 (mod 2) when n =

(m
2

)
for some integer m ≥ 2, and |∆(n)| ≡ 0 (mod 2)

otherwise. This approach can be extended to d-dimensional pyramidal partitions by studying an action of
the symmetric group on them. We will denote by ∆dD(n) the set of d-dimensional pyramidal partitions of
size n, to avoid confusion with ∆1(n) and ∆2(n) defined in Section 5.

Theorem 7.4. Let n, d ∈ N, with d a prime number. If there exists an integer m ≥ d such that n =
(m
d

)
,

then |∆dD(n)| ≡ 1 (mod d). Otherwise, |∆dD(n)| ≡ 0 (mod d).

8. Convex and concave partitions

Convex partitions are defined by Dean Hickerson in [10, A074658], where the number of convex partitions
of size n is counted for n ≤ 55. The concept of concave partitions is essential to some Schur positivity
conjectures (see [2, Conjecture 7.1.1]). In this section, we will extend our research on triangular partitions
to these more general families, starting with some characterizations.

Definition 8.1. A partition λ is said to be convex (resp. concave) if its Ferrers diagram consists of the
points in N2 that lie on or below some convex (resp. concave) curve.

Proposition 8.2. Given a partition λ, the following are equivalent:

1. λ is convex (resp. concave).

2. λ can be obtained as the intersection (resp. union) of a finite number of triangular partitions.

3. Conv(λ) ∩ (N2 \ λ) = ∅ (resp. λ ∩ Conv(N2 \ λ) = ∅).
4. There exists a convex (resp. concave) region R ⊂ R2

≥0 such that λ = R ∩ N2.

Using these new concepts, we can give a new characterization for triangular partitions.

Corollary 8.3. A partition is triangular if and only if it is convex and concave.

However, this characterization does not generalize to higher dimensions (see [12]).

Removable and addable cells in the convex and concave settings are defined in an analogous way to
Definition 2.5.

Proposition 8.4. A cell c = (a, b) is removable from a convex partition η if and only if it is a vertex
of Conv(η) and (a+1, b), (a, b+1) /∈ η. Similarly, a cell c ′ is addable to a concave partition ν if and only
if it is a vertex of Conv(N2 \ ν).
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To close the article, we will study the asymptotic growth of the number of convex or concave partitions.
We will use

⋂
(n) (resp.

⋃
(n)) for the set of convex (resp. concave) partitions of size n.

Theorem 8.5. There exists a constant b and a function δ(n) ∼ 32/3

2 n2/3 such that

2
3√n
√

2 3
√
n − 2

4 3
√
n + 4

≤
∣∣∣⋂(n)

∣∣∣ ≤ exp(b 3
√
n log n),

2
3
√

4(n−δ(n))√
2 + 2 3

√
4(n − δ(n))

≤
∣∣∣⋃(n)

∣∣∣ .
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